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ABSTRACT

We propose a general stochastic model for the UT1-LOD system and derive the
corresponding Kalman filter model. This stochastic model consists of an arbitrary
sum of continous time autoregressive moving average (A RMA) processes, each
chosen to characterize a different frequency band. The transition matrix which
corresponds to the overall system and the time-dependent process noise covariance
matrix are derived.

Based on the general formulation, several models for UT7 were derived from
spectral analysis of the Space 92 UTT1 series (Gross, 1993). Using Space 92 as the
reference series, the candidate models were compared based on their ability to
predict UT1 and LOD upto 30 days in the absence of data. These candidate models
were compared with the JPL operational Kalman Earth Orientation Flter (KEOF)
which assumes a random walk model for LOD (Morobito et al., 1987). The results
of the comparison revealed that autoregressive modeling the 30-60 day oscillation in
the LOD reduces the LOD prediction error by 10% to 20% during the first 30 days of

prediction.



1 Introduction

The rotational rate of the solid earth (length of day) is not constant but undergoes small and
unpredictable variations of up to several milliseconds in the length of day (LOD). Changes
which occur over time scales of less than two years are dominated by the exchange of angular
momentum between the atmosphere and the solid earth ( crust and mantle ), while decadal
fluctuations have been attributed to the angular momentum exchange between the earth’'s
liquid core and solid mantle (Hide and Dickey, 1991 ). Using a variety of space-age techniques,
highly accurate observations of these changes have been made for over two decades. These
include very long baseline interferometry (V LBI), satellite laser ranging (SLR), lunar laser
ranging (L LR ), and more recently global positioning system (GPS). Combining these mea-
surements using the Kalman filter was first proposed by Morobito et a. (1987). In general,
the Kalman filter combines a dynamic model (e.g. autoregressive time series model) and raw,
irregularly spaced multidimensional observations (e.g. UT1 and polar motion) to produce
predictions and smoothing of the observed time series. Stochastic models for the UT1 and
polar motion were derived from analysis of atmospheric angular momentum (AAM) data
( Morobito et al., 1987). A more recent description of Kalman filtering of earth orientation
data is contained in Freedman et a. (1994).

The purpose of this paper is to continue and improve the stochastic modeling of UT1
and LOD. In particular, we will propose a general stochastic model for UT1 and derive
the corresponding Kalman filter model. This stochastic model assumes that the UT1 is
driven by an arbitrary sum of general autoregressive moving average (ARMA) processes,
each characterizing a different frequency band. This general formulation of the Kalman filter
allows for experimentation and flexibility in studying different stochastic models for UT1 and
1.LOD, which in turn depends on the frequency band one wishes to model accurately. The
use of ARMA processes as building blocks for the general stochastic processes is common
in many applications (Brzezinski; Gelb; Haykin). Although each ARMA process is linear,
certain linear combinations have been used to model nonlinear random processes, including
those with power spectrums exhibiting 1/f power laws (Kushner, 1982).

We will derive several models for UT1 based on spectral analysis of the Space 92 LOD
series (Gross, 1993). Using Space 92 as the reference series, the candidate models will be
compared based on their ability to predict UT1 and LOD up to 30 days in the absence of data
These candidate models will be compared with the operational Kalman Earth Orientation
filter (KEOF) which assumes a random walk model for LOD (Morobito et al., 1987).

2 Stochastic UT1 model

We will begin by formally defining a continous time ARMA(n,m) process. An autoregressive
moving average process Y'(t) is a process which satisfies the stochastic differential equation
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wher W(t) is a continuous time white noise process with known excitation power q.The

mathematical theory of such processes can be found in Priestly ( 1981). We will consider t+ he
case of m=n -- 1, which implies that the process is aymptotically stable (Priestly, 1981).
In state space form, equation ( 1 ) can be reduced to the first order system

i(t) = AX(t) + BW(1) (2)

Y() = CX(t), 3)
where, in genera, the matrices A, B, and C are (nxn), (nx 1),(1 xn) respectively, and the
vector X(t) is given by XT(t)= Xi(t), Xa(t),. . .X,(t)). There areinfinitely many choices for
the matrices in (2)-(3). We will use the representation (Faddeeva, 1959)
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The constant parameters a; reflect the autoregressive part of the process, while the con-
stant parameters b reflect the moving average part. Each process is fully determined by
these two sets of parameters and the excitation power q.

The equation relating UT1 with the LOD is given by

AA(®)

Ut) = —L(t) = =~
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where U(t) denotes the UT1, AA(t) denotes the variability in LOD, and A. = 86400 sees.
L(t) is assumed Lo satisfy the differentia equation

L(t) =Y, +Y;4 .. +Y,+ W, (6)

where each Y, is an ARMA(n,n-1) process with excitation power parameter ¢, and Wy isa
white noise, independent of each Yi, with excitation power qr. Using the first order system
representation of equations (2)-(3), we obtain the following matrix model for the UT1:
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which will be abbreviated simply as
y(t) = Fy( + 6) v, ®)

2




where the zero mean white noise vector W' (t) has power spectral matrix Q.

We will also consider the LOD model

Lt)= Y+ Yo+ . .+ Y + Wy, 9)

The resulting first order system representation can be obtained from equation (8) by deleting
the first row and first column of matrices £ and G, and deleting component L from the vector
Y. We will show that a similar result will hold for the corresponding Kalman filter equations.
Thus, the model (9) for LOD is subsumed by the model given in equation (6).

The general solution to equation (8) is given by
V()= oY)+ [ 8(t — ) GW(s)ds, (10)

where ®(t) denotes the state transition matrix. The discrete time system corresponding to
equation (10) is obtained by sampling Y(t) at times {t;}, for k> 0. The resulting discrete
time system is given by

Yi,,, = ®(tear — )V, + Uk, (11)

where Vi, = Y(t), and Uy is a zero mean vector given by
a4
Ui = / O(thyy — 3) GW(s)ds, (12)
th
with covariance matrix @ given by
t
Qu= /' " B(tesr — $)GQwGT T (thsr — 3)ds. (13)
Below is a formula for ®(t), whose derivation is detailed in Appendix A. Based on this
formula, we derive the resulting form of @& in appendix B. Assume that the LOD is modeled

as in eguation (6), and the resulting system for the UT1 and LOD satisfies equation (8) with
F given by (7). Then the transition matrix ®(t)=e** is given by
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where the vectors Z,and R; depend on the coefficients of the matrix A, (recal that A,is
the ARMA system matrix which has the form given in equation (4)).

We will consider two cases, which correspond to two different classes of ARMA processes.
Case 1. Ainvertible : In this case, we have

Zi(t) =CiAT + tA; — MY (15)
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Rit)y=CoAT [ - (16)

Case 2: Y (t) satisfies the equation %‘i(t):bow.(t): In this case, Z,(t) and R;(t) reduce
to

; B 12 t3 tn+l
400 = 0 gy (17)
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It is easily shown that det(A;)= (-1 )*~'(—ao). Thus, case 1 holds if ao#O. The transfer
function corresponding to the differential equation has no poles at zero. In case 2,the ARMA
coefficients are all equal to zero except for the coefficient &. For n = 1, case 2 corresponds to
a random walk model, whereas for n= 2 it corresponds to an integrated random walk, The
transfer function corresponding to case 2 has poles only at zero. The above formulation does
not treat the case where the transfer function of the differential equation has simultaneous zero
and nonzero poles. In this case, no closed form expression for &(t) was obtained, although
other approximations for &(t) can be considered.

For A asin equation (4), the exponential matrix e4* which appears in equation ( 14)
is well-understood. In most applications the matrix is computed numerically, However, in
order to carry out the integration which appears in equation (13), it is desirable to have an
explicit representation of e4as a function of time. If the matrix A has simple eigenvalues
(ie. of multiplicity one) given by {Ai,...,An}, then et is given by et = V(¢)[V ~1(0)], where
V(t) is given by

(19)

Explicit representation for e4+* for the more complicated case of eigenvalues with multiplicity
greater than one is derived in Hamdan (1993). For the second case where the process Y;(t)
satisfies X (t) = b Wi(t), the corresponding matrix et is given by
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Finally, we note that for L(¢) given by equation (9), the corresponding transition matrix
®(t) is obtained from the matrix of equation (14) by deleting the first row and first column.



In the next section, we will apply the above formulation to specific autoregressive models
of LOD obtained by anayzing the power spectrum of Space 920D data

3 Examples of LOD models

One of the most popular methods for constructing ARMA models is based on spectral anal-
ysis of the observed times series. The frequency domain characterization of ARMA models
is detailed in Priestly (1981 ). In our experiment, an optimaly smoothed LOD series (Figure
1) derived from the Space 92 (Gross, 1993) combination of space-geodetic observations was
used to estimate the LOD spectrum. Since the uncertainty of the LOI) series drops below
0.04 msec after 1985, only the data from 1985 to 1992 was used to estimate the spectrum.

The effects of solid earth tides (Yoder et al., 1981 ) and long period (fornightly and
monthly) ocean tides (Dickman, 1993) were removed from the time series. We also removed
from the data the annual and semi-annual variations by using the following seasonal model:

LOD,easonar = 0.2880cos(2rt) + 0.17 04sin(27t) — 0.1433 cos(4nt) — 0.2569sin(4nt), (21)

where LOD,eq50nat is in msec and t = (JD - 2447527.5)/365.2422. This model was derived
from approximately 30 years of LOD data which was provided by Gross (private communi-

cation, 1993). Since we are interested in LOD variability at periods much less than one year,
a one year moving-average was removed from the series. The approximate spectrum of the
remaining series was computed using the spectral analysis procedure described by Eubanks
et al. (1985) with a 15 point spectral smoothing (Figure 2).

Based on the estimated spectrum (Figure 2), two stochastic models for the LOD were
constructed. The first, which will be denoted as Model 1, is the sum of a random walk process
(RW) and a first order auto-regressive process (AR1). This corresponds to the general model
of equation 9, with m = 2. That is,

L(t) = (1) + Ya(t), (22)
where the RW process Y,(t) satisfies the equation

Yl(t) = Wi(t), ¢ = 3.0 X 10~ msec?/day?, (23)
and the AR1 process Ya(t) satisfies the equation
Ya(t) + 0.077 Ya(t) = Wa(t), g2 = 3.(I X 102 msec?/day®. (24)

For i = 1,2, ¢i is the excitation power spectral density of the white noise process W;(t). For
the AR1 process in equation (24), the constant 0,077 corresponds to a dissipation time of 1.3
days. The power spectrum corresponding to the process L(t) given by equations (24)-(26)
is shown in Figure 2.

The second model, which is denoted as Model 2, is the sum of Model 1 plus a second order
auto-regressive process (AR2), which attempts to model the 40-50 day oscillation exhibited
by the LOD spectrum, The model is given by

L(t) = Yi(t) t V2(8) + Ya(2), (25)
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where Y,(t) and Y2(!) are as in equations (24)and(25). but withq1== S.0 x 10~ msec?/day?
and 92 = 9.0 x 10~ msec?/day®. The process Y3(¢) satisfies the equation

Y3(t) + 0.133Y3(t) + 0.0366Y5(t) = Wi(t), g3 = 2.25 x 10— msec?/days?, (26)

which corresponds to a dissipation time of 15 days and a resonance period of 35days.The
power spectrum of the process [(t) as given in equation (27) -(2S) is shown in Figure 2,

The current JPL Kalman Earth Orientation filter (KEOF) uses the following random
walk mode for the LOD (Morobito et, al., 1987):

L(t)=Wy.(t),q, = 0.0036 msec?/day’. (27)

This is a special case of equation (6) with m = O. This model will be refered to as Model 0.
The corresponding power spectrum is also shown in Figure 2.

Using the KEOF and IRIS (International Radio Interferometric Surveying) Intensive
single-baseline VL BI data, the above models for LOD were compared based on their ability
to predict LOD in the presence of long data gaps. The IRIS Intensive VLBI dataset spanned
t hree years from October 1989 to the end of 1992, The sub-daily tidal effects were removed
using the model of Herring (1994), The effects of the solid earth (Yoder et a., 1981) and
ocean tides (Dickman, 1993) were also removed, as were the seasonal variations based on the
model in equation (23). Systematic differences in terms of relative bias and rates between
the IRIS Intensive series and the UT 1 series of Space 92 were also removed. In order to
test the above models, forty gaps were inserted in the dataset, each of length thirty days.

Using each model separately, the KEOF forward filter series is compared with the Space 92
series as described in this section. In the absence of data, the KEOF forward filter series is
equivalent to the propagation of initial data thirty days into the future using the dynamical
models described in section 2. The ability of the model to predict LOD is measured by the
root mean square(RMS) of the difference between the forward filter series during the data
gaps and the Space 92 series. The RMS of the prediction error for day i is

(1 .
RMS(i) = 10 > (ipred(i,n) - Space92(i) ) »1<71<30, (28)

n=1
where pred(i,n) is the prediction of LOI) for the :** day of the n** gap, 1<n < 40,

In order for the prediction error to be reinitialized before entering each data gap, two
successive gaps are separated by ninty days of daily data points. Consequently, the difference
between the KEOF forward filter run and Space 92 decreases to a small level prior to entering
any of the data gaps, Moreover, this initia error is approximately the same for each of the
[LOD models used.

4 Results

The RMS function for each LOD model is plotted against time (30 days) in Figure 3. The
corresponding RMS function for the UT1 is plotted in Figure 4. Compared with the LOD
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prediction error of the KEOF model, both Model 1 and Model2reduce the 1,01) prediction
error by a factor of approximately 10(% (day 1) to 20% (day 3).The corresponding reduction
of tile UT1 prediction error varies from13% (day 1) to 23% (day 8).F or the first15 days
in prediction, the reduction of the L.LOD prediction error in Model?2 is approximately 3%
to 5% greater than that of Model 1. For the second 15 days of prediction, the situatioun is
reversed withroughlythe same variability, The reduction of the UT1 prediction error in
Model 2 is approximately 0% to 8% greater than that in Model 1. I'bus, Model2 performs
as well or better than Model 1 during the first 15 days of L.LOD prediction, and during the
first 22 days of U'T1 prediction. This suggests that modeling the 40-50 day LOD oscillation
improves LOD predictions up to 15 days, and improves UT1 predictions up to 22 days.
Compared with the KEOF model (Model O), the major improvement in the predictions can
be attributed to the AR1 process, which is present in both Model 1 and Model 2.

in Figures 5a, we have plotted the actual LOD prediction error (RMS function described
above) for Model O adong with the LOD error as predicted by the Kalman filter. A similar
plot for the UT1 prediction error is shown in Figure 5b. The corresponding errors for Model 1
and Model 2 are shown in Figures 5¢-5f. For the first 16 days, the actual and predicted LOD
errors corresponding to Model O and Model 2 (Figures 5a and 5€) coincide to a great extent.
For the remaining 14 days, the predicted error for Model O overestimates the actual error
by as much as 0.1 msec., while the errors corresponding to Model 2 continue to track each
other. The predicted error corresponding to Model 1 (Figure 5¢) begins to underestimate
the actual error after only 8 days of prediction. The largest difference is approximately
0.05 msec. (day 13), and the two errors coincide again after 24 days of prediction, The
difference between the predicted and actual UT1 errors corresponding to each model show
similar behavior (Figures 5b, 5d, and 5f).

5Discussion

As stated in the previous section, the improvements in the LOD and UT] predictions as
exhibited by Model 1 and Model 2 can be attributed primarily to the AR1 component of the
LOD models, which is not present in Model 0. It also appears that the initial error growth
obeys a t!/?1law for the first 15 days (t< 15). This is the error growth law of a random walk,
which is precisely the assumption of Model O (Figure 5a). This growth law is also reflected
by Model 2 (Figure 5€) for at least the first 10 days. However, the actua error begins to
decline after 18 days and then begins to grow again after 26 days (Figure 3). Model 2 (Figure
5e) anticipates this behavior in error growth early on and thus tracks the actual error more
closely than the other two models. It might therefore be suggested that the change in the
actual error growth is due to the 40-50 day oscillation which is accounted for in Model 2. On
the other hand, what we refer to as the ‘actual error’ in this paper is the observed error. It is
not clear how accurate the observed error is with respect to the theoretically true error. The
observed error (Figure 3) is a statistical error based on 40 ensembles of 30 day predictions
using Space 92 as a reference series. Other experiments (Freedman et al., 1994) revealed
similar results for Model O, but we know of no other results for ARMA models such as Model
1 and Mode] 2.




For practical considerations, we regard the first 15 days of prediction as being more
important than the second 15 days, as our predictions are currently done on a twice a weck
basis. As a result, the parameters that were chosen for Model 1 and Model 2 were based on
inspection of the estimated spectrum of the Space 92 series. In general, optimal estimation of
ARMA parameters based on data can be achieved, for example, using the extended Kalman
Filter. However, in addition to being more costly to implement, such optimal fitting of the
data may not reflect our preference for the first 1,5 days of prediction,

In conclusion, the main result from our 1.OD modeling experiments is that L.LOD is dom-
inated by an ARI structure in addition to a random walk structure at long periods. Adding
the 40-50 day oscillation to the AR! and random walk only slightly improves LOD predic-
tions for the first 15 days. However, accounting for the 40-50 day oscillation seems to yield
the most accurate predictions of the formal errors corresponding to LOD and UT1 predic-
tions, Based on the results of our experiments, Model 2, as described in this paper, seems
to be the most appropriate model for 15 day predictions of LOD and UT1.
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6 Figure Captions

Figure 1. Space 92 1.LOD series with the seasonal model and a one year moving average
removed. Daily points are plotted from 1991-1992 only, but the spectrum in Figure 2 is
computed from daily Space 92 points ranging from 1985-1992.

Figure 2:Fstimated power spectrum of the Space 92 LOD series (using the procedure in
Eubanks et al., (1 985) with a 15 point spectral smoothing) along with the theoretical power
spectral densities of Model O, Moddl 1, and Model 2. Note: ‘The spectrum is computed from
Space 92 data ranging from 1985-1992.

Figure 3: RMS of LOD prediction error corresponding to 3 models. The error is computed
as (Space 92- LOD forward filter run).

Figure 4. RMS of UT1 prediction error corresponding to 3 models.

Figure 5: Predicted and actual Standard deviation of LOD and UT1 prediction error (as a
function of time) corresponding to Model O, Model 1, and Model 2.
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Figure 5e - Actual and estimated standard
deviation of LOD Prediction error (Model 2)
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Appendix A: FORMULATION OF THE RANDOM EARTH ROTATION MODEL

The equation relating the UT1 with the .LOD s given by

. AA(t
v = -1y = - 220 (1
20
where {(t) denotes UT1, AA(t) denotes the variability in LOD, and Ao= 86400 sees. TheLOD is assumed
to satisfy the differential equation

L)y=Y(t)+Yo(t)-t...+ V() + Wi(t) , (2)

where each of the Y's belongs to the set ARMA(n, n-1) and W, is white noise. Asin Section 2, since each

}’,belongs to ARM A(n,n-1), the nth-order differential equation that is satisfied by Y; can be reduced to the
first-order system

X(t) = AXi(t) + BWi(t)  Xi(t) = (X, (t) X*(D).. . Xa(t)T ?)

Y: - CiXi (4)

where /t, B, C are of the form given in equation (4) of Section 2. Equation (4) can be substituted into

equation (2), and the resulting equation, combined with equations (1) and (3), can be written in state-space
form as follows:

ro U A 0
, 0-1 o .. 0 00........
;W 00 ¢ & . £ (0100 .. 0 ||}
) ) 1
x| - ' A, 0. X, | + OO0OB, o 0 Wy 6
. A, B,
[ X o Anl | x, | 10 Bl | e, ]
The system (5) can be abbreviated as
Y=FY+GW, (6)

where F and G are (MmN + 2) x (mn + 2), and Y, W are (mn + 2) x 1 column vectors. The matrix F can be
partitioned as F = F, + F,where

000o0.....0
0 -10...... Oo0ciCy..Cm
| 0 Al
= Fa= A
0. i 0 Am

The following properties will be used:
Pl/Fp =0 forn>2
P2/ FPPFP =0 forn2>21,m>1.

It will be shown in P3 that £5* has nonzero entries in the same location as F2. Also, F* = O, so weneed
only show that F,F,= O. This is easily seen by direct computation.
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P3/ Form> 2, F3"has nonzero entries inthe same location as £5. A fornwla for £ will be useful inthe
analysis to come, and it will show that P3 holds for m> 2. We first assure that A, isinvertible.

00..........t 0
00F ... Pyt
. AP
£ A '
An

where the row vector p™ = C; A™ for m >,

The above formula s easily proven by induction.
P4/{Fi+ F)"=FRF}'+Fp  n>l

Proof (by induction):

(Fi+ F)(Fy+ Fo) = FR 4 FyFy + FyFy + F3

=0+ FF2a40+4 Ff = FiFy + F2.

Assume

(Fy+ F)" ™ = Ry + FP~2+ FP~1. Then

(Fi+ Fa) (Fy+ F2)"0 = (R4 Fa) (RFP™2 + FpY)

= FIFP" 4 F\Fp~ ' 4 By FP™2 4 Fp.
Using P1 and P2, P4 follows directly.

Using P1 through P4, the transition matrix ®(t) = exp {(F,+ ¥2)t} can now be derived,

oo n

exp{F1+F3}t=Z%(Fl +F)” ()

n=0

o0 t"
=I+(Fi+FP)t+ Y = (FA+R)"
n=2

n
o tn N
:1+(F1+Fz)t+zm(FIF,"“)-rEmF; . )
n=2 n=2

Since the summations start at n = 2, we can use the formula in P3 to compute F™’. The expression for
FiFr=1for n> 2 is given by

00 -CAT . . ... =CnAl?

CARRRNRRRRRNARRRRNNARR RN
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After summing up from n = 2 t0 oo, the nonzero elements Of £y £~ will be of the form

n

—C, Z; %7 APTE = GATET 4 Avt et 9)

Equation (7) can now be rewritten as
¢ tn
exp{(Fi+ F)t) =14 Fit+ M+ Y = Fp (lo)
n=1 '

where M, can be computed using (9). Using the formula in P3 and bringing the summation inside the
matrix yields

eAmt _

where the row vector R; = Ci A7 ![et4*— ] Finally, (10) becomes

rl —'tZlZQ ............... Zm b
OlR1Ry ..o oo, R,
CA”
(P4t et (12),
L eAmt |

where Z,=C; A7 21+t Ai— e*4], and R = CiA] ! [e* 4 — ]

We now consider the second case, in which the coefficients of Alnsatisfy a;=0,fori=0,1,....n-1,and
bj=0fOrj=1,2,...,n- 1. The differential equation becomes i:m% = bow(t), and the matrix A becomes

010......... ,
0010... . o

A= | . cr=1.1. (12)
00 ... 01 :
00 ...... 00 0

For n= 1, the model is a random walk; for n =: 2, it is an integrated random walk. For this class of
excitation models, an equation similar to (11) will be derived.

The matrix A of the form (12) haa the following property:
A‘={a(i,j)} hasentry 1if j=1+k and entry zero otherwise. (13)

Hence, if Aisan n X n matrix, then An = O. Therefore, the matrix

n-1

o~ it ot
kZA H:EAE (14)
=0 k=0
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is given by

1 54 TR
01 ¢t 5 e
001" . (15)
. t
0 |
and the matrix
0 tk ‘s n+1 ik ‘2
> AT = A
k=2 k=2
is given by o o~
7‘ 3_' ............... (D—HY
00
(16)
t3/3!
0 t2/2
n+1l
‘'he quantity Zi appearing in ( 11) is given by—C; 3 £ AE-2 where Ci= (bo,0,. ,0). It follows that Z
k=2
is given b
’ Y t? gn+! 17
T2 3Ty ) n
The expression R; appearing in (11) is given by
=Gy Lar oy B
R; = ikz 7 = ‘I,Z pl . (18)
=1 =1

By a similar argument as above, it can be shown that
2
R‘-._bo(ta—...;l—» (19)
Appendix B: Computation of Process Noise Covariance Matrix

In this section we will derive an expression for the process noise covariance matrix @&, which is given
by (see equation 13 of section 2)

Qi = l ; @ (tegr ~ 1) GQw GTOT (tig1 — 1)dr. (20)

13

In the process of evaluating @&, certain expressions appear repeatedly. One such expression is eAtQeAT,
where @ isan n x n matrix that has entry zero everywhere except Q(n, n) = q (i.e., element (n, n) has nonzero
entry ). Let the eigenvalues of A be numbered {*1,22,, ... A,}. Some of the eigenvalues may be repeated,
in which case they should be numbered successively. Denote the n*® column of e4* by V,,. Then, by direct
calculation, it can be shown that

€'Q AT = gV VT, (21)
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which is an n x n matrix

It is known that for .4 of the form given by equation (15) of section 2, e** = V(t) V-I(0), where 1"(0)
contained eigenvectors Or generalized eigenvectors, depending on the distinctness of the eigenvalues of matrix
A (Faddeeva, 1959). The following analysis assumes that the eigenvalues are distinct. The general case of
eigenvalues with multiplicities was treated by Hamdan ( 1993).

Let column n of matrix V' “(O) be given byn.-{&,&, ... & YT If Va = {s1, 42, .., . then the
i*h entry of V,,,1<i<n,is given by

ui= & (A eMY). (22)
i=1
It follows that element (i, t') of matrix eA*QeA* is given by (note: V(1,j) = e**,V(1,s) = e**)

qpite = gy ) GEATIAT A (23)

j=la=1

Thus, element (i, £) of matrix f::“e'“QeAT'dt is given by qf,'_"“#.'#gdt, which is easily evaluated

By letting At ==tk+1— 1, we may rewrite Qg as
at
Qr = O(s)GQwGT 87T (s)ds, (24)
9

where Q, isassumed to be of the form diagonal (O, 9L, Q@w,. ... , Qw,.), whereqris a scalar and each
N X n matrix Qw,, is of the form Qw, = diagonal (g, O, . ... O). The matrix G is given by G = diagonal
(0,1, By,....Bn), where the Bi's are as defined in equation (4), Section 2. It follows that the matrix
Q=GQwG" isgiven by

Q = diagona (0,92,Q1,...,Qm), where Q = diagonal (0,0,...,¢). (25)

The transition matrix ¢ will be partitioned as follows:

My, M, 1 —t] [Zl...Zm]
= h = y M = 26
d [Ma M4],w ere M, [0 i 2 Ry... R, i) (26)
M,= (mn x 2) zero matrix, M,= diagonal (e4,..,eA~') is mn x mn.
Let Q be partitioned as
_ | o2
Q - [03 04] }
where
o= 00 (27)

[O Q?x? ‘
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@2 =2 x mn zero matrix, ay = (a2)”  andaq - diagonal (Q,,..&m) is {mn X mn) Using the above
partitions, the matrix ¢Q®7” will be given by

) ()
%Qq’;“[w;m wj(z)] ' (28)

where

Vi) = Miaa M + MaaaMI ox 2.
¥a(t) = MioyMI + MyayMT = Mya MT 12X mn,
Wa(t) = MyagMT = ¥1(1)
W4(t) = MeagMT ;. mn x mn.

(29)

Each one of the above matrices will be integrated separately. ¥4(t) is actualy given by ¥4(¢) = diagona
et QT .,e"m‘Q,,,eAT‘Y The integral of this matrix is of the form given in equation (27). ¥2(t)
isthe transpose of ¥3(¢), so only ¥1 (t) needs to be analyzed.

The first term appearing in ¥, (t) is given by

2
MT QLt ‘th
Mo MT {10 (30
where ¢z = E (W?). The second term appearing in ¥, (t) is given by

r_ [2:QiZ7 Z:QiRT
MaayM, ._S [R,-Q;ZZT RO.RT | (31)

Let £ (W?) =0, and recall from Equation ( 16)-(17) of Section 2 that

=1

Z; = C.'A;-2 (I + At — e““)

Ri = AT (et -1) (32)
whenever A;! exists. When A4; ! does not exist, Zi and R; are given by
_ t? ta tn+l t2 tn
Z.—-—bo(-2— y(—';—:i-)-'),&—bo(l?m> (33)

Case 1: Assume A is n x n and Al exists. Let K = CA”. Then
2QZT =K Q+1 (AQ + QA) + FAQA™+€"Q (eAt)T
(M@ +[eAQ)T) - (te*1QAT + [terQaT)T) } KT (34)
Integrating from ¢ = O to At,

At at? AL
/ 2Qz%dt= K QAt + = (AQ+ QA) + —S—AQAT
o {

[A—IQAA'—I)Q-FQ(CAA'— I)T A-T}

[(A’At —A7%) A% 4 4721 QAT — AQ [(A'AL - 4-2) 40ty 4-2)7
At
TR (e*7)" dt K. &)
}




LetL=CA"!,sothat R =L (" - I). Thus,

RQE! = L{Q(e)] - (40 (4g)) + @ 17 )

and

At
/ RQRT dt
0
+/0me““Q (eA')Tdt} L

Using the same notation,

L{AtQ - (Al [43¢- 1) Q+ Q(erdt=1)" A°T)

ZQR =K(I+ At—-e*)Q (¢" - )T L
=KM@+ (e4'Q)" - Q - e (eay”
+ AQ (t (e‘“)T -} LT (37

which implies

At
\1 ZQRTd = K Al (494~ 1) Q+ Q (eAai— )T 4T
- QAL+ AQ [( AT'AL- A7) A0ty 4-7)T

At? At
. AQ~;— /0 e g (A7) dt 1LT. (38)

Case 2: Al does not exist.

Given that Q(1, ) = O except when i =j =n, Q{(n, n) = q, and given the form (17),(19) (section 2) for
Z and R, it follows that

At
T _ qbgAt 2:+3
\1 £Qz7"at [(n+ 1)) (2n +3) (39)

qbgAt2n+l

B 2n+ 1) (40)

At
J RORTdt
at 2A42n42
T4y —qboAt
\1 2R = o ien v ) (41)

This concludes the integral of ¥y (t)at.

Next, an expression for fom W2(t) dt will be generated. ¥2(t) = MyaqM7T is a2 x mn matrix that is
given by

_ ZlQl(eAu)T ......... ZmQm (eA,_c)T
¥a(t) =
2(t) [Rle(e"”)T. e ROn (CA,.n).]" « (42)

For integration, first it will be assumed that Al exists.

ZQ ()7 = K {Q+ AQt- e4'Q}(e*)”
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After some agebra,

Al T T
/ 2Q(e*) dt=K {Q(e“‘ ~ D) AT+ AQ(AT At ATy ARy A"
i At \ (43)

_ J CAtQ(eAt)T Jdt

Similarly, after some algebra,

JA: RQ(e*)Tdt = L {JM QAT a — QA = 1) AT

At
For the case in which A~! does not exist, the (2 x n) matrix Qe ).
Q (CAI)T, reduces to

w4l n-1 A=2
g w0 mIy mmpee! 1}. ()
[ 0 bOn'H r—r)—, Z——), ...... t 1

‘Thisis a2 x n matrix. The integral of element (1, j) is given by

b Af=i+?

m+D)i(n- ) 2n -+ 2) (45)
while the integral of element (2, j) is given by
b,g At?n-itl
N - J)}(2n -] + 1)’ (46)
This concludes the integral f;**¥2(t) dt, as well as the integration of [::‘ $2 (t)
3 4 7
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